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1. Introduction

Recently there has been a renewed interest on non-boundary conforming formulations, which have been emerging as a
viable alternative to unstructured methods especially for complex geometries and fluid–structure interaction problems. To
compute the flow around a complex body the equations of motion are usually solved on a fixed structured grid, which is
almost never aligned with the body. Depending on the specifics of the formulation, boundary conditions are imposed by
appropriately modifying the stencil in the neighborhood of the body [17], or by using a forcing function which can be derived
either using physical arguments [15], or directly from the discrete problem [6]. The latter category of methods -also called
direct-forcing methods- are particularly attractive for computing the flow around complex rigid bodies, since they can be
implemented into existing finite-difference or finite-volume structured solvers in a straightforward manner. Boundary mo-
tion, however, introduces additional complications, and a trivial extension of the direct-forcing formulations designed for
stationary boundaries (see for example [6,10,2]) to fluid–structure interaction problems, leads to hydrodynamic forces that
lack smoothness and are a potential source of instabilities [18,19].

Yang and Balaras [19] suggested that the large fluctuations of the hydrodynamic forces on moving immersed bodies are
due to the fact that, at any given timestep, some of the Eulerian grid points in the vicinity of the body will not have the cor-
rect velocity, pressure or their derivatives, due to their association with the solid in a previous timestep. The problematic
cells as well as the appropriate treatment depends on the details of the implementation. Yang and Balaras [19], for example,
proposed a field-extension procedure, where the solution is ‘extended’ into the body in a way that the cells that emerge into
the fluid have the proper velocity and pressure at later timesteps. Mittal et al. [13] in their generalized ghost-cell formula-
tion, assigned the proper values at the problematic cells by interpolating from their surroundings. Uhlmann [18] suggested
an alternative direct-forcing scheme, where the force is computed on the Lagrangian markers rather than Eulerian points as
. All rights reserved.
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it was done in all previous implementations, which resulted in much smoother hydrodynamic forces. For the purpose of
illustrating the differences between the two strategies let us assume that ui (i ¼ 1;2;3) is a discrete approximation of the
velocity field and write the time-discretized form of momentum equation as:
unþ1
i � un

i

Dt
¼ rhsnþ1=2 þ f nþ1=2

i ; ð1Þ
where rhs contains all advective and diffusive terms, fi is the direct-forcing function which is different from zero only at the
grid points in the vicinity of the immersed body, and n;nþ 1 refer to the current and next timestep respectively. In the di-
rect-forcing scheme proposed in [6] or [2], for example, for every point where fi–0, one can replace unþ1

i in Eq. (1) with the
desired velocity ub

i (usually determined by means of interpolation from the surrounding nodes), and find:
f nþ1=2
i ¼ ub

i � un
i

Dt
� rhsnþ1=2

: ð2Þ
Substituting fi back into Eq. (1) the proper boundary condition, unþ1
i ¼ ub

i , is recovered. In the formulation proposed by Uhl-
mann [18] on the other hand, the direct-forcing function is computed on each Lagrangian marker, rather than on the Eulerian
grid nodes, as follows:
Fnþ1=2
i ¼ Ub

i � Un
i

Dt
� RHSnþ1=2: ð3Þ
The upper case symbols in Eq. (3) denote the same variables as in Eq. (2), but at the Lagrangian points on the immersed body.
Setting eU ¼ Un

i þ Dt RHSnþ1=2, which is practically the Lagrangian counterpart of the predicted velocity, ~ui, (see Eq. 5), we can
rewrite Eq. (3) as:
Fnþ1=2
i ¼ Ub

i � eUi

Dt
ð4Þ
Uhlmann [18] computed the volume force from Eq. (4) and used the regularized delta functions introduced in [15] as kernels
in the transfer of variables between the Eulerian and Lagrangian grids. The overall implementation was tailored to model
suspended rigid spherical particles in laminar and turbulent flows, where it was demonstrated to be very efficient and ro-
bust. Direct extension to more complex fluid–structure interaction problems however, hinges upon the requirement to have
uniform elements on the surface of the body, as well as on the fact that only integral hydrodynamic forces could be com-
puted. In the present study, based on the ideas presented in [18], we propose a direct-forcing scheme that utilizes a versatile
moving-least-square (MLS) approximation to build the transfer functions between the Eulerian and Lagrangian grids, and
can be applied to arbitrary moving/deforming bodies. We will also propose a method to compute the local traction forces.
The overall formulation utilizes very compact stencils and, without compromising accuracy and robustness, gives results
that are identical to ‘sharp’ direct-forcing methods.

2. Methodologies

The proposed formulation will be discussed in the framework of a finite-difference, fractional-step, Navier–Stokes solver
for incompressible flow. Both advective and diffusive terms are advanced explicitly using an Adams–Bashforth scheme, and
all spatial derivatives are discretized using central, second-order, finite-differences on a staggered grid. Details on the basic
solver together with applications in a variety of wall-bounded and free-shear flows can be found in [16,3,2]. In the following
sections we will focus on the proposed direct-forcing scheme and computation of the hydrodynamic forces.

2.1. MLS reconstruction

In the framework of the above mentioned splitting scheme we first take a provisional step to compute the intermediate
velocities, ~ui, which do not satisfy the incompressibility constraint and the boundary conditions on the immersed body:
~ui ¼ un
i þ

Dt
2
ð3Hðun

i Þ � Hðun�1
i ÞÞ � Dt

@pn

@xi
; ð5Þ
where H is a discrete operator representing the spatially discretized convective and viscous terms. Next, we will build a di-
rect-forcing function that will enforce the proper boundary conditions on all the Eulerian grid nodes influenced by the im-
mersed body. As in [18] we will compute the forcing function on the Lagrangian markers and then transfer it to the Eulerian
grid nodes. Our transfer operators, however, will be constructed using MLS shape functions with compact support [11,12]. To
facilitate this process, for each Lagrangian marker we: (i) Identify the closest Eulerian grid node. Referring to Fig. 1(a), for
example, the marker la is associated to the grid node xa, which is in the center of a cell with dimensions hx and hy in the
x and y directions respectively. Marker lb is associated to the grid node xb and so on. Note that more than one Lagrangian
markers from the same, or different immersed bodies, can be associated with the same Eulerian grid node. (ii) Define a sup-
port-domain around each Lagrangian marker, in which the shape functions will be constructed. In our case the support



Fig. 1. (a) Definition of the support-domain for two neighboring Lagrangian markers, lA and lB , which are color coded for clarity. XA and XB denote the closest
Eulerian nodes to lA and lB respectively. The corresponding volumes DV are also shown (dashed line). (b) The normal probe defined by the Lagrangian
marker l and point, e is shown together with the support domain used in the MLS approximation.
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domain is a rectangular box of size 2Hx � 2Hy � 2Hz centered at the location of the marker. Hx;Hy and Hz are different for
each marker and are proportional to the local Eulerian grid. We found Hx ¼ 1:2hx, Hy ¼ 1:2hy and Hz ¼ 1:2hz (see
Fig. 1(a)) to be sufficient for all cases considered in this study; (iii) Associate a volume, DVl ¼ Alhl (Al is the area of the body
surface associated to marker l, and hl is a local thickness that depends on local grid size and will be defined in the following
paragraphs) to each marker point. In Fig. 1(a) the volumes DVla and DVlb for markers la and lb respectively are shown. There is
no overlapping between successive volumes, DVl, and the sum of all local Al is equal to the total area of the immersed object
surface.

We can now define the transfer operator that will enable the computation of eUi from the corresponding velocities, ~ui, gi-
ven by Eq. (5). Using the MLS method, eUi for each Lagrangian marker, l, can be approximated in its support domain as
follows:
eUiðxÞ ¼
Xm

j¼1

pjðxÞajðxÞ ¼ pTðxÞaðxÞ; ð6Þ
where pTðxÞ is the basis functions vector of length m; aðxÞ is a vector of coefficients, and x is the position of the Lagrangian
marker. We found that a linear basis, pTðxÞ ¼ ½1 x y z�, is a cost-efficient choice and would represent the field variation for all
variables up to the accuracy of our spatial discretization scheme. To obtain the coefficient vector, a(x), the following
weighted L2-norm is defined:
J ¼
Xne

k¼1

Wðx� xkÞ½pTðxkÞaðxÞ � ~uk
i �

2
; ð7Þ
where xk is the position vector of the Eulerian point k in the interpolation stencil, ~uk
i is the variable defined in Eq. (5) for grid

point k, and Wðx� xkÞ is a given weight function that will be defined below. ne is the total number of grid points in the inter-
polation stencil, which for the linear basis function above, involves five and seven points in two- and three-dimensions
respectively. For simplicity we set the closest point to the Lagrangian marker to be the center point in the stencil. Minimizing
J with respect to a(x) leads to the following set of equations:
AðxÞ aðxÞ ¼ BðxÞ ~uk
i with;

AðxÞ ¼
Xne

k¼1

Wðx� xkÞpðxkÞpTðxkÞ;

BðxÞ ¼ ½Wðx� x1Þpðx1Þ . . . Wðx� xneÞpðxneÞ�; and

~uk
i ¼ ½~u1

i . . . ~une
i �

T
: ð8Þ
The size of matrix A(x) depends on the size of the basis vector, p(x), and it is 3� 3 in two-dimensions and 4� 4 in three-
dimensions, while B(x) is of size 3� ne in two-dimensions or 4� ne in three-dimensions. Combining Eqs. (6) and (8) one
can write eUi as follows:
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eUiðxÞ ¼
Xne

k¼1

/l
kðxÞ~uk

i ¼ UTðxÞ~uk
i ð9Þ
where UðxÞ ¼ pðxÞ AðxÞ�1 BðxÞ is a column vector with length ne, containing the shape function values for marker point l.
Cubic splines are used for the weight functions, Wðx� xkÞ, above, which can be written as:
Wðx� xkÞ ¼
2=3� 4�r2

k þ 4�r3
k for �rk 6 0:5

4=3� 4�rk þ 4�r2
k � 4=3�r3

k for 0:5 6 �rk 6 1:0
0 for �rk > 1:0

8><
>: ð10Þ
where �rk ¼ jx� xkj=Hi. These functions are monotonically decreasing and are sufficiently smooth in the support domain. The
resulting shape functions reproduce exactly the linear polynomial contained in their basis and possess the partition of unity
property

Pne
i¼1/iðxÞ ¼ 1 [12]. Also, the field approximation is continuous on the global domain as the MLS shape functions are

compatible.
Eq. (9) will give eUi, which can then be substituted into Eq. (4) to obtain the volume force Fi on all Lagrangian markers. To

transfer Fi to the Eulerian points associated with each marker, l, the same shape functions used in interpolation procedure
can be used if properly scaled by a factor cl, which will be determined later. In such case, the final forces on the Eulerian grid
nodes would be:
f k
i ¼

Xnl

l¼1

cl/
l
kFl

i; ð11Þ
where f k
i is the volume force in the Eulerian point k in the direction i;/l

k is the shape function previously obtained relating
variables between grid point k and marker l, and Fl

i is the force in marker l. Also, nl is the number of Lagrangian markers
which are related to the grid point k. To properly rescale the shape functions we require that the total force acting on the
fluid is not changed by the transfer:
Xnte

k¼1

f k
i DVk ¼

Xntl

l¼1

Fl
iDVl ð12Þ
where, DVk ¼ ðhx � hy � hzÞ is the volume associated with the Eulerian grid point k, and DVl ¼ Alhl is the volume associated
with the marker l, with hl ¼ 1=3

Pne
k¼1/

l
kðhx þ hy þ hzÞ. nte and ntl is the total number of forced grid points, and total number

of Lagrangian markers respectively. As our surface is discretized using triangular elements, the area for marker l is obtained
by a simple angle averaging process. Using (11) in (12) and rearranging the sums in the left hand side in terms of the total
number of markers we get
Xntl

l¼1

Xne

k¼1

/l
kDVkclF

l
i ¼

Xntl

l¼1

DVElclF
l
i ¼

Xntl

l¼1

Fl
iDVl ð13Þ
where DVEl is the averaged Eulerian grid volume associated to the Lagrangian marker l. For Eq. (13) to hold the scaling factor
cl needs to be set to:
cl ¼
DVl

DVEl
¼ Alhl

DVEl
; ð14Þ
One can also show that the above scheme guarantees the equivalence of total torque between the Eulerian and Lagrangian
meshes:
Xnte

k¼1

xk � fkDVk ¼
Xntl

l¼1

Xl � FkDVl ð15Þ
For simplicity we will provide a proof in two-dimensions, but the extension to three-dimensions is straightforward. In par-
ticular, the two-dimensional form of Eq. (15) can be written as:
Xnte

k¼1

ðxkf k
y � ykf k

x ÞDVk ¼
Xntl

l¼1

ðXlFl
y � YlFl

xÞDVl; ð16Þ
or as:
Xnte

k¼1

xkf k
y DVk ¼

Xntl

l¼1

XlFl
yDVl; ð17Þ

Xnte

k¼1

ykf k
x DVk ¼

Xntl

l¼1

YlFl
xDVl; ð18Þ
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Eq. (16) will hold if both (17) and (18) hold. In the following we will consider proof of Eq. (18), and similar arguments can be
used for Eq. (17). For each Lagrangian marker, Yl can be expressed in terms of the shape functions as follows:
Yl ¼
Xne

k¼1

/l
kyk: ð19Þ
Substituting (19) and (11) into (18) and reordering the sums in the LHS:
Xntl

l¼1

Fl
xcl

Xne

k¼1

/l
kykDVk ¼

Xntl

l¼1

Fl
x

Xne

k¼1

/l
kykDVl: ð20Þ
Inspection of Eq. (20) confirms that the equivalence of total torque will be satisfied, if for each Lagrangian marker, l, the fol-
lowing is true:
cl

Xne

k¼1

/l
kykDVk ¼

Xne

k¼1

/l
kykDVl ð21Þ
Given that cl ¼ DVl=
Pne

k¼1/
l
kDvk, and assuming DVk is constant on the Eulerian stencil, (21) is trivially satisfied. In summary,

the proposed transfer operators, conserve momentum on both uniform and stretched grids. For torque to be conserved the
cell volume across the stencil should be kept constant for each marker. This is satisfied in case of uniform grids. In other sit-
uations, the departure from equivalence for torque will depend on the amount of stretching of the grid. Numerical experi-
ments on two dimensional meshes showed that this difference is small (less than 0.5%) for 10% grid stretching in each
direction.

Using the forcing function from Eq. (11), we can now correct the intermediate velocity ~ui to respect the boundary condi-
tions on the immersed body: u�i ¼ ~ui þ Dtfi. The resulting approximate velocity field, u�i , which is not divergence-free, can be
projected into a divergence-free space by applying a correction of the form:
unþ1
i ¼ u�i � Dt

@

@xi
ðdpÞ; ð22Þ
where dp ¼ pnþ1 � pn is the pressure correction, which satisfies the following Poisson equation:
@2ðdpÞ
@xi@xi

¼ 1
Dt

@u�i
@xi

: ð23Þ
The velocity field, unþ1
i , given by Eq. (22) is divergence-free and satisfies the boundary conditions to the order of OðDt2Þ [10].

2.2. Calculus of surface forces

In non-boundary conforming formulations the fact that the computational grid and the surface of the body are almost
never aligned, introduces complications to the computation of hydrodynamic forces generated by the surrounding fluid.
In the present formulation for the case of rigid bodies the distributed forcing function given by Eq. (11) can be utilized to
compute the total hydrodynamic force on a solid object, provided that all interior points are properly treated (see for exam-
ple [18]). Extension of this approach, however, to the general case of moving/deforming bodies is not trivial. In the present
study we have developed a methodology where the local hydrodynamic force per unit area on a surface element,
f H
i ¼ sjinj ¼ �pdij þ l

@ui

@xj
þ @uj

@xi

� �� �
nj; ð24Þ
is computed directly from the flow field around the body. In Eq. (24), f H
i is the hydrodynamic surface force in xi direction, sji is

stress tensor, and nj is the direction cosine of the normal unit vector in xj direction. The use of Eq. (24) requires knowledge of
p and @ui=@xj on the body surface. In the formulation outlined above the boundary is defined in a sharp manner, but the pres-
sure and velocity fields are forced to vary smoothly through the surface of the body. Consequently the use of the same trans-
fer functions to estimate p and @ui=@xj at the Lagrangian markers would probably underestimate the actual traction forces.
This was also verified by a series of numerical experiments we conducted for the case of the flow around an oscillating cyl-
inder below.

To avoid such problems, for each Lagrangian marker, l, on the body we create a normal probe by locating an external
point, e, at a distance, hn, from the surface (see Fig. 1(b)). The distance hn is proportional to the local grid spacing and is
set to: hn ¼ ðhx þ hy þ hzÞ=3. To compute the surface pressure at marker, l, we first compute the pressure, pe, at point e, using
the MLS formulation described in the previous section. The support domain in this case is centered around point e as shown
in Fig. 1(b). Next, the value of @p=@n is obtained from the momentum equation normal to the boundary [19]:
@p
@n
¼ �Du

Dt
� n; ð25Þ
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where n is the normal unit vector passing through the marker l, and Du
Dt is the acceleration of the marker. The value of the

pressure at the surface is then obtained from:
Fig. 2.
functio
pl ¼ pe � @p
@n

hn ð26Þ
The velocity derivatives, @Ui=@xj, at the location e for each Lagrangian marker, l, are computed by differentiating Eq. (9):
@Ui

@xj
¼
Xne

k¼1

@/k

@xj
ui; ð27Þ
where @/k=@xj comes from the solution of an additional system of equations similar to (8) [12]. Given the fact that hn is of the
order of the local grid size, and assuming a linear variation of the velocity near the body, the derivatives, @Ui=@xj, coming
from Eq. (27) are good approximation for the derivatives @ui=@xj, at the surface. Higher-order reconstruction procedures
could also be adopted, albeit at a higher cost. As we will demonstrate in the results section the above procedure reproduces
the forces on the surface of an immersed body very accurately when compared to boundary-conforming methods at the
same grid resolution.

3. Results

In this section we will present a series of test problems of increasing complexity to demonstrate the accuracy and robust-
ness of the proposed formulation. First, the formal accuracy is examined for the case of the flow around a cylinder submerged
in a driven cavity. Then, the flow around a cylinder oscillating in a cross flow is considered. Here we focus on the accuracy of
the local force distribution on the surface of the cylinder. Finally, the robustness of the approach in complex fluid–structure
interaction problems is demonstrated for the case of sphere-wall collisions.

3.1. Accuracy study

To evaluate the spatial accuracy of proposed algorithm we performed simulations of the flow around a cylinder immersed
in a lid-driven cavity. Fig. 2(a) shows the geometry and a typical vorticity distribution. For all cases considered the cylinder
diameter was set to D ¼ 0:4LR, and the Reynolds number, Re ¼ UlidLR=m ¼ 1000, where LR is the cavity size and Ulid the veloc-
ity of the top boundary. The no-slip conditions on the surface of the cylinder were enforced using the proposed MLS
reconstruction.

Although an analytical solution for this problem is not available, the overall accuracy of the scheme can be evaluated by
comparing the solution among grids at different resolution. To facilitate this comparison on a staggered grid arrangement we
considered meshes with 362;602;1082;1802 and 5402 nodes. With this choice the finest one ð5402Þ is the reference solution,
and the average and maximum errors on each of the coarser grids is computed without the need to interpolate. In Fig. 2(b)
The flow around a cylinder immersed in lid-driven cavity. (a) Computational set-up; (b) L2 norm of the error and (c) Linf norm of the error as a
n of the cell size Dx. ðNÞ u velocity, (j) v velocity.
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and (c), the L2 and Linf norms of the error are shown as a function the spatial resolution. Both errors decrease with a second-
order slope, indicating that the second-order spatial accuracy of the Cartesian solver is maintained.

3.2. Oscillating cylinder in a cross-flow

The ability of non-boundary conforming methods to properly capture the surface pressure and viscous stress distribution
is of paramount importance, especially in fluid–structure interaction problems. To assess the performance of the proposed
formulation we considered the case of a transversely oscillating cylinder in a cross-flow. The dominant parameters are the
Reynolds number Re ¼ U1D=mðU1 is the inflow velocity), the forcing frequency, fe, and amplitude, a0, of the oscillation. When
fe varies around the natural shedding frequency, f0, interesting phenomena occur due to the complex energy transfer be-
tween the fluid and the body [7,8].

Capturing the detailed flow physics for this problem requires an accurate reproduction of the vorticity dynamics on the
surface of the body and is a stringent test for non-boundary-conforming schemes. The parametric space we considered is the
one used in the experiments by Gu et al. [7], the boundary-conforming simulations of Guilmineau and Queutey [8], and com-
putations by Yang and Balaras [19], where an embedded-boundary method with a direct-forcing scheme is used. The motion
of the cylinder is given by yðtÞ ¼ a0sinð2pfetÞ. We considered three cases with Re ¼ 185; a0 ¼ 0:2D and fe=f0 ¼ 1:0;1:1;1:2
respectively. For all cases the computational domain was set to 50D� 30D in the streamwise and cross-stream directions
respectively, with the cylinder located at 10D from the inflow boundary. Free-slip conditions are used at the freestream
boundaries and a convective condition at outflow boundary [14]. We considered two grids with 500� 450 and 850� 750
nodes, where the resulting cell size around the cylinder was Dx ¼ Dy ¼ 0:008D and Dx ¼ Dy ¼ 0:004D respectively. A series
of tests for flow over a stationary cylinder was first conducted to examine the sensitivity of the results to the grid resolution.
The predicted mean and root-mean-square (rms) values of the drag and lift coefficients on the fine grid were
CD ¼ 1:377;Crms

D ¼ 0:296 and Crms
L ¼ 0:461, and the corresponding values on the coarser grid are within 1.5% of the above,

demonstrating the grid independency of the results.
The temporal evolution of the lift and drag coefficients for the case of the oscillating cylinder are shown in Fig. 3(a) and

(b). It is evident that the proposed scheme results in a smooth variation of the force coefficients without special treatments.
In Fig. 3(c) a comparison of CD;C

rms
D and Crms

L for the different excitation frequencies is shown with the corresponding results
in the boundary conforming computations in [8] and the computations using a direct-forcing scheme in [19]. A similar com-
parison for the phase angle between the lift coefficient and transverse displacement of the cylinder is shown in Fig. 3(d). In
general the agreement is excellent. The largest discrepancy appears in CD and is of the order of 3.5%. We should also note that
Fig. 3. Drag and lift coefficients as a function of time for the case of cylinder oscillating in a cross-flow for (a) fe=f0 ¼ 1:0, and (b) fe=f0 ¼ 1:2ð�CD and – CLÞ.
(c) Comparison of force coefficients. �CD;MCrms

D ;�Crms
L are the present results for the fine grid; — CD;�� �� Crms

D , – �– Crms
L from reference [8], and +

CD;�Crms
D ;rCrms

L from [19]. (d) Phase angle between lift force and vertical displacement. M are the present results on the fine grid; - - [8] and � [19].
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the numerical resolution around the cylinder in our computations is comparable to the one in the reference computations,
where Dx � 0:005D.

An important point in the computation of the hydrodynamics forces, especially in fluid–structure interaction problems, is
consistency on the total force and moment exchanged between the fluid and solid systems (action–reaction). Uhlmann [18],
for example, who utilizes a similar forcing scheme, proposes a force computation approach that results in equivalence of
integral forces. For the case of the oscillating cylinder we compared the force coefficients obtained by direct integration
of the local stresses resulting from the normal probe approach, to ones obtained using the approach in [18]. The agreement
is very good and the maximum difference is 2:3% for the coarse grid ðDx ¼ 0:008Þ and 1.4% for the fine one ðDx ¼ 0:004Þ indi-
cating the consistency of our approach.

While mean force predictions is a good indicator of the overall performance of the method, they do not necessarily trans-
late into an accurate representation of the local forces. In Fig. 4 the distributions of pressure coefficient, Cp, and the skin fric-
tion coefficient, Cf , on the cylinder’s surface are shown for the time instance corresponding to the extreme upper position.
Results for both grids are included from our computations, and are compared with the corresponding results by Guilmineau
and Queutey [8] and Yang and Balaras [19]. The higher sensitivity of Cf to the grid resolution results in slightly lower peak
values on our coarse grid computations. The results on finer grid agree very well with the reference data. Cp is less sensitive
to the grid resolution the results on the different grids are almost indistinguishable.

3.3. Three dimensional example: sphere-wall collision

To investigate the robustness and accuracy of the proposed method in three dimensional configurations we performed
computations of a rigid sphere bouncing off a wall. Problems involving collisions between immersed bodies are particularly
challenging for direct-forcing schemes, since the presence of two or more Lagrangian markers from different bodies in the
proximity of the same Eulerian grid cell is usually the source of ambiguity. The proposed forcing scheme treats such situa-
tions in a robust manner without the need for special treatments.

The particular configuration we selected has applications to particulate flows, and a number of experimental (i.e. [5,9])
and numerical (i.e. [1]) results are available in the literature for comparison. The dominant parameter in the collision process
is the Stokes number, St ¼ 1=9ðqb=qf ÞRe, where qb and qf are the particle and fluid densities respectively, and Re is the Rey-
nolds number based on the particle diameter, D, and the translational velocity, Uf , an instant before impact. For low values of
the Stokes number (St < 10) no rebound will occur, even if the dry restitution coefficient, edry, is different from zero. For
St > 10 rebound occurs, and the total restitution coefficient, eT , is lower than edry. For large values of the Stokes number
ðSt > 500Þ the total restitution coefficient, eT , approaches edry. If edry ¼ 0, then the Reynolds number is the only dominant
parameter.

Below we will present results from two different configurations: (i) a case where no rebound occurs, which resembles the
conditions in the experiments by Eames and Dalziel [5]; (ii) a case where rebound is allowed, which resembles the condi-
tions in the axisymmetric Navier–Stokes computations by Ardekani and Rangel [1]. In Fig. 5 a sketch of the computational
domain is shown. Both the sphere and the wall are immersed into a locally refined Cartesian mesh [4], and are represented
by an unstructured Lagrangian grid with 2:7� 105 and 2:9� 105 markers respectively (see Fig. 5(b)). The Eulerian grid is ar-
ranged in a way that the resolution around the sphere is Dx ¼ 0:01D.
Fig. 4. Distribution of the pressure and skin friction coefficients Cp and Cf for the case of a cylinder oscillating in a cross-flow. The cylinder is located at the
extreme upper position. -.- present results for Dx ¼ 0:008D, — present results for Dx ¼ 0:004D; � body-fitted computations in [8], - - non boundary-
conforming computations in [19]. (a) fe=f0 ¼ 1:0; (b) fe=f0 ¼ 1:2.



Fig. 5. Sphere-wall interaction problem. (a) Computational setup; (b) Lagrangian and Eulerian grids.
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In both cases the horizontal displacements and rotations are constrained and the vertical displacement, zsðtÞ, is governed
by:
Fig. 6.
are sna
ms€zsðtÞ ¼ �msg þ fzðzs; _zs; tÞ; ð28Þ
where ms is the mass of the sphere, g is the acceleration of gravity and fz is the hydrodynamic force on the sphere in the
vertical direction. The Navier–Stokes equations governing the dynamics of the fluid, and Eq. (28) governing the dynamics
of the sphere are solved as a coupled system using the predictor–corrector strategy proposed in [20].

Initially the sphere is located at a distance of 4:3D from the horizontal wall, and is impulsively started to reach a velocity
corresponding to an initial Reynolds number of Rei ¼ 510. The density ratio is fixed to qs=qf ¼ 3:2. The resulting Reynolds
number just before impact is Re ¼ 830 and the corresponding Stokes number is St ¼ 295. Contact is assumed to take place
when sphere and floor are within a distance of one cell size. In the experiments by Eames and Dalziel [5] the Reynolds num-
ber before impact was Re ¼ 850, but the motion of the sphere was prescribed and no bounce was allowed to occur. To sim-
ulate these conditions in our computations the dry restitution coefficient, edry, was set to zero (see Eq. (29) below).
Sphere-wall interaction with edry ¼ 0:0. The left half in all figures are azimuthal vorticity isolines from the present computations, and the right half
pshots from the dye visualizations in [5] at Re ¼ 850. (a) �sf , (b) 0, (c) sf , (d) 2sf , (e) 3sf , (f) 4sf , where sf ¼ D=Uf .
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In Fig. 6 dye flow visualizations form the experiments in [5] are directly compared to our computations, where the flow
patterns are visualized using azimuthal vorticity isolines. The computed flow patterns are in very good qualitative agree-
ment with the experiment. Direct quantitative comparisons are not possible due to the fact that vorticity and scalars, such
as dye, do not have the same dynamics as a result of their different diffusivities and the absence of vortex stretching in the
case of scalars. As the sphere approaches the wall the detached shear layers and the small recirculating areas behind the
sphere are evident in both experiments and computations (Fig. 6(a) and (b)). Just after impact the vorticity in the shear layers
moves towards the wall generating a layer of vorticity with opposite sign on the sphere’s surface (see Fig. 6(c)). As soon as
this layer separates (Fig. 6(d)), a vortex dipole is formed and moves away from the sphere (Fig. 6(e) and (f)). By locating the
center of these vortices in the computations and the experiments we found that in their trajectories through time are always
within 5%.

Next, we considered the bouncing sphere problem. The dry restitution coefficient was the one used in the axisymmetric
calculations of Ardekani and Rangel [1], edry ¼ 0:97, which is typical for steel-sphere and glass-wall collisions. The collision
process starts when the distance between the particle and the wall is equal to the roughness height, hr . We assume that
rough surface has a negligible effect on the viscous force until the gap between the smooth portions of surfaces becomes
equal to the size of largest roughness element, hr . This is also the moment the impact is assumed to occur. Details can be
found in [1]. Just after the collision we define a new set of initial conditions for Eq. (28) as follows:
Fig. 7.
3:5sf , (
zs2 ¼ zs1; _zs2 ¼ �edry _zs1 ð29Þ
where zs1; _zs1 and zs2; _zs2 are the sphere’s vertical position and velocity before and after the impact respectively.
In numerical simulations of contact problems it is important that the lubrication layer between the bodies is resolved. In

all our computations the surface roughness, which practically determines how close the bodies can come, and numerical res-
olution were selected in a way that a minimum of 5–6 Eulerian grid points were present between the bodies during impact.
We first considered the same case as in the above example (Re ¼ 830 and St ¼ 295) with a non-zero restitution coefficient,
edry ¼ 0:97, in order to compare the vortex dynamics with the no-bounce case. In Fig. 7 azimuthal vorticity isolines of the no-
bounce (left) and bouncing sphere (right) are shown. Just before impact (Fig. 7(a)) the flow for both cases is identical since
we start from the same initial conditions. At a later time and after the first impact (Fig. 7(b) and (c)), the layers of vorticity
with alternating sign that were observed in the case with edry ¼ 0:0 can also be seen in the bouncing sphere problem. In the
latter case, however, the primary vortex originating in the wake is weaker and the upward motion of the sphere causes the
shear layer at the surface to roll-up into a strong secondary vortex. As the downward motion of the sphere starts the sec-
ondary vortex pinches-off (see Fig. 7(d)) and by the time the second bounce occurs it is dissipated. As a result the wake
and secondary vortices do not form the dipole structure seen in the no bounce case.

Ardekani and Rangel [1] defined a total restitution coefficient, eT ¼ Ua=Uf , where Ua is the velocity of the sphere at
tUf =D ¼ 0:07 after the impact time, tc , which measures the dissipative effect of the fluid, as it is drained and subsequently
reenters the layer between sphere and wall. For the present case we found eT ¼ 0:63. A direct comparison with the compu-
tations reported in [1], where they reported eT ¼ 0:92, is not possible because of the differences in the Reynolds numbers.
A comparison of edry ¼ 0:00 (left) and edry ¼ 0:97 (right) computations for the sphere-wall interaction at Re ¼ 830. (a) �0:1sf , (b)sf , (c)2sf , (d) 3sf , (e)
f) 4:1sf , where sf ¼ D=Uf .



Our eT value, however, is consistent with the trend reported in [1] where a decrease in eT was observed with increasing Rey-
nolds number and constant Stokes number. In particular they found a decrease of 5.0% for eT at St ¼ 301 when Re increases
from 35 to 162. To further verify the accuracy of our formulation we also conducted a computation that closely matches the
low Reynolds number conditions in the simulation by Ardekani and Rangel [1]. The Reynolds Number before impact was
Re ¼ 76:8 and the Stokes number St ¼ 299. In this case we computed an eT ¼ 0:91, which is in very good agreement with
the reference results of eT ¼ 0:92.

4. Summary and conclusions

In the present work a MLS reconstruction procedure for immersed-boundary type methods is proposed. The overall meth-
od is a generalization of the formulation initially proposed by Uhlmann [18], where the main difference with existing direct-
forcing schemes (i.e. [6,10,2]) is that the evaluation of the forcing function is done on the Lagrangian nodes rather than the
Eulerian points. The main advantages of this strategy compared to existing direct-forcing schemes can be summarized as
follows:

1. It is much more versatile since it decouples the local disctetization from the computation of the forcing function and,
therefore, can be implemented into structured or unstructured codes in a straightforward manner. Most of the available
direct-forcing schemes have been developed in the framework of finite-difference or finite-volume formulations on
Cartesian grids.

2. It is very robust in dealing with collisions of multiple bodies. The forcing function is built and appropriately scaled based
on the contributions of all bodies in the vicinity of an Eulerian point without special treatments. In most direct-forcing
methods the presence of two or more Lagrangian markers from different bodies in the proximity of the same Eulerian
grid point is usually the source of ambiguity.

The method was also found to maintain the second-order spatial accuracy of the underlying finite-difference solver. Most
importantly, we have demonstrated that when combined with the scheme we propose to compute the surface forces, it has a
sharp-like behavior similar to sharp Eulerian direct-forcing schemes and boundary conforming methods. The overall com-
putational cost of the proposed formulation is comparable to other ’direct’ forcing approaches available in the literature
(i.e. [10,2]). In the case of stationary bodies the interface tracking step, as well as the computation of the shape functions
can be done in a pre-processing module and stored in memory. Then, the computational effort associated with the forcing
step reduces to the evaluation of the weighted sums for interpolating the intermediate velocities Eq. (9) and extrapolating
the force Eq. (11)
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